123 research outputs found

    DeepRibo : a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns

    Get PDF
    Annotation of gene expression in prokaryotes of-ten finds itself corrected due to small variations ofthe annotated gene regions observed between differ-ent (sub)-species. It has become apparent that tradi-tional sequence alignment algorithms, used for thecuration of genomes, are not able to map the fullcomplexity of the genomic landscape. We presentDeepRibo, a novel neural network utilizing featuresextracted from ribosome profiling information andbinding site sequence patterns that shows to be aprecise tool for the delineation and annotation of ex-pressed genes in prokaryotes. The neural networkcombines recurrent memory cells and convolutionallayers, adapting the information gained from boththe high-throughput ribosome profiling data and ri-bosome binding translation initiation sequence re-gion into one model. DeepRibo is designed as a sin-gle model trained on a variety of ribosome profil-ing experiments, used for the identification of openreading frames in prokaryotes withoutaprioriknowl-edge of the translational landscape. Through exten-sive validation of the model trained on various setsof data, multiple species sequence similarity, massspectrometry and Edman degradation verified pro-teins, the effectiveness of DeepRibo is highlighted

    An update on sORFs.org : a repository of small ORFs identified by ribosome profiling

    Get PDF
    sORFs.org (http://www.sorfs.org) is a public repository of small open reading frames (sORFs) identified by ribosome profiling (RIBO-seq). This update elaborates on the major improvements implemented since its initial release. sORFs.org now additionally supports three more species (zebrafish, rat and Caenorhabditis elegans) and currently includes 78 RIBO-seq datasets, a vast increase compared to the three that were processed in the initial release. Therefore, a novel pipeline was constructed that also enables sORF detection in RIBO-seq datasets comprising solely elongating RIBO-seq data while previously, matching initiating RIBO-seq data was necessary to delineate the sORFs. Furthermore, a novel noise filtering algorithm was designed, able to distinguish sORFs with true ribosomal activity from simulated noise, consequently reducing the false positive identification rate. The inclusion of other species also led to the development of an inner BLAST pipeline, assessing sequence similarity between sORFs in the repository. Building on the proof of concept model in the initial release of sORFs.org, a full PRIDE-ReSpin pipeline was now released, reprocessing publicly available MS-based proteomics PRIDE datasets, reporting on true translation events. Next to reporting those identified peptides, sORFs.org allows visual inspection of the annotated spectra within the Lorikeet MS/MS viewer, thus enabling detailed manual inspection and interpretation

    sORFs.org : a repository of small ORFs identified by ribosome profiling

    Get PDF
    With the advent of ribosome profiling, a next generation sequencing technique providing a ‘snap-shot’ of translated mRNA in a cell, many short open reading frames (sORFs) with were identified. Follow-up studies revealed the existence of functional peptides, so-called micropeptides, translated from these ‘sORFs’, indicating a new class of bio-active peptides. Over the last few years, several micropeptides exhibiting important cellular functions were discovered. However, ribosome occupancy does not necessarily imply an actual function of the translated peptide, leading to the development of various tools assessing the coding potential of sORFs. Here, we introduce sORFs.org (http://www.sorfs.org), a novel database for sORFs identified using ribosome profiling. Starting from ribosome profiling, sORFs.org identifies sORFs, incorporates state-of-the-art tools and metrics and stores results in a public database. Two query interfaces are provided, a default one enabling quick lookup of sORFs and a BioMart interface providing advanced query and export possibilities. At present, sORFs.org harbors 263 354 sORFs that demonstrate ribosome occupancy, originating from three different cell lines: HCT116 (human), E14_mESC (mouse) and S2 (fruit fly). sORFs.org aims to provide an extensive sORFs database accessible to researchers with limited bioinformatics knowledge, thus enabling easy integration into personal projects

    eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs

    Get PDF
    Alternative translation initiation mechanisms such as leaky scanning and reinitiation potentiate the polycistronic nature of human transcripts. By allowing for reprogrammed translation, these mechanisms can mediate biological responses to stimuli. We combined proteomics with ribosome profiling and mRNA sequencing to identify the biological targets of translation control triggered by the eukaryotic translation initiation factor 1 (eIF1), a protein implicated in the stringency of start codon selection. We quantified expression changes of over 4000 proteins and 10 000 actively translated transcripts, leading to the identification of 245 transcripts undergoing translational control mediated by upstream open reading frames (uORFs) upon eIF1 deprivation. Here, the stringency of start codon selection and preference for an optimal nucleotide context were largely diminished leading to translational upregulation of uORFs with suboptimal start. Interestingly, genes affected by eIF1 deprivation were implicated in energy production and sensing of metabolic stress

    REPARATION : ribosome profiling assisted (re-)annotation of bacterial genomes

    Get PDF
    Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated methods depend heavily on sequence composition and often underestimate the complexity of the proteome. We developed RibosomeE Profiling Assisted (re-)AnnotaTION (REPARATION), a de novo machine learning algorithm that takes advantage of experimental protein synthesis evidence from ribosome profiling (Ribo-seq) to delineate translated open reading frames (ORFs) in bacteria, independent of genome annotation (https://github.com/Biobix/ REPARATION). REPARATION evaluates all possible ORFs in the genome and estimates minimum thresholds based on a growth curve model to screen for spurious ORFs. We applied REPARATION to three annotated bacterial species to obtain a more comprehensive mapping of their translation landscape in support of experimental data. In all cases, we identified hundreds of novel (small) ORFs including variants of previously annotated ORFs and >70% of all (variants of) annotated protein coding ORFs were predicted by REPARATION to be translated. Our predictions are supported by matching mass spectrometry proteomics data, sequence composition and conservation analysis. REPARATION is unique in that it makes use of experimental translation evidence to intrinsically perform a de novo ORF delineation in bacterial genomes irrespective of the sequence features linked to open reading frames

    Mass spectrometry and ribosome profiling, a perfect combination towards a more comprehensive identification strategy of true in vivo protein forms

    Get PDF
    An increasing number of studies involve integrative analysis of gene and protein expression data, taking advantage of new technologies such as next-generation transcriptome sequencing (RNA-Seq) and highly sensitive mass spectrometry (MS). Recently, a strategy, termed ribosome profiling, based on deep sequencing of ribosome-protected mRNA fragments, indirectly monitoring protein synthesis, has been described. In contrast to routinely employed protein databases in proteomics searches, RIBO-seq derived data gives a more representative expression state and accounts for sequence variation information and alternative translation initiation. To verify the potential of ribosome profiling in providing us with a true snapshot of the translational landscape, we devised a proteogenomic approach generating a database of translation products based on ribosome profiling experiments. The raw and untreated RIBO-seq data is analyzed for both splice isoforms and single nucleotide polymorphisms, as such taking into account transcriptional variation. Next to that, RIBO-seq data for translation start site discovery (treated with harringtonine, lactomidomycin or puromycin) is used to obtain a genome wide blueprint of all possible translation initiation sites and as such taking into account translation variation. By adding protein-DB annotation to the genomic RIBO-seq derived data and after in silico translation a protein database is constructed reflecting the full complexity of the proteome. Using a first version of our proteogenomic approach on an undifferentiated mouse embryonic stem cell line (E14) we could demonstrate an increase of the overall protein identification rate with 2.5% as compared to only searching UniProtKB-SwissProt. Furthermore, identification of N-terminal COFRADIC data resulted in detection of 16 alternative start sites giving rise to N-terminally extended protein variants besides the identification of four translated uORFs

    Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs

    Get PDF
    Background: It was long assumed that proteins are at least 100 amino acids (AAs) long. Moreover, the detection of short translation products (e. g. coded from small Open Reading Frames, sORFs) is very difficult as the short length makes it hard to distinguish true coding ORFs from ORFs occurring by chance. Nevertheless, over the past few years many such non-canonical genes (with ORFs < 100 AAs) have been discovered in different organisms like Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster. Thanks to advances in sequencing, bioinformatics and computing power, it is now possible to scan the genome in unprecedented scrutiny, for example in a search of this type of small ORFs. Results: Using bioinformatics methods, we performed a systematic search for putatively functional sORFs in the Mus musculus genome. A genome-wide scan detected all sORFs which were subsequently analyzed for their coding potential, based on evolutionary conservation at the AA level, and ranked using a Support Vector Machine (SVM) learning model. The ranked sORFs are finally overlapped with ribosome profiling data, hinting to sORF translation. All candidates are visually inspected using an in-house developed genome browser. In this way dozens of highly conserved sORFs, targeted by ribosomes were identified in the mouse genome, putatively encoding micropeptides. Conclusion: Our combined genome-wide approach leads to the prediction of a comprehensive but manageable set of putatively coding sORFs, a very important first step towards the identification of a new class of bioactive peptides, called micropeptides

    A role for human N-alpha acetyltransferase 30 (Naa30) in maintaining mitochondrial integrity

    Get PDF
    N-terminal acetylation (Nt-acetylation) by N-terminal acetyltransferases (NATs) is one of the most common protein modifications in eukaryotes. The NatC complex represents one of three major NATs of which the substrate profile remains largely unexplored. Here, we defined the in vivo human NatC Nt-acetylome on a proteome-wide scale by combining knockdown of its catalytic subunit Naa30 with positional proteomics. We identified 46 human NatC substrates, expanding our current knowledge on the substrate repertoire of NatC which now includes proteins harboring Met-Leu, Met-Ile, Met-Phe, Met-Trp, Met-Val, Met-Met, Met-His and Met-Lys N termini. Upon Naa30 depletion the expression levels of several organellar proteins were found reduced, in particular mitochondrial proteins, some of which were found to be NatC substrates. Interestingly, knockdown of Naa30 induced the loss of mitochondrial membrane potential and fragmentation of mitochondria. In conclusion, NatC N-tacetylates a large variety of proteins and is essential for mitochondrial integrity and function

    An update on LNCipedia : a database for annotated human lncRNA sequences

    Get PDF
    The human genome is pervasively transcribed, producing thousands of non-coding RNA transcripts. The majority of these transcripts are long non-coding RNAs (lncRNAs) and novel lncRNA genes are being identified at rapid pace. To streamline these efforts, we created LNCipedia, an online repository of lncRNA transcripts and annotation. Here, we present LNCipedia 3.0 (http://www.lncipedia.org), the latest version of the publicly available human lncRNA database. Compared to the previous version of LNCipedia, the database grew over five times in size, gaining over 90 000 new lncRNA transcripts. Assessment of the protein-coding potential of LNCipedia entries is improved with state-of-the art methods that include large-scale reprocessing of publicly available proteomics data. As a result, a high-confidence set of lncRNA transcripts with low coding potential is defined and made available for download. In addition, a tool to assess lncRNA gene conservation between human, mouse and zebrafish has been implemented

    Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini

    Get PDF
    Translation initiation generally occurs at AUG codons in eukaryotes, although it has been shown that non-AUG or non-canonical translation initiation can also occur. However, the evidence for noncanonical translation initiation sites (TISs) is largely indirect and based on ribosome profiling (Ribo-seq) studies. Here, using a strategy specifically designed to enrich N termini of proteins, we demonstrate that many human proteins are translated at noncanonical TISs. The large majority of TISs that mapped to 5' untranslated regions were noncanonical and led to N-terminal extension of annotated proteins or translation of upstream small open reading frames (uORF). It has been controversial whether the amino acid corresponding to the start codon is incorporated at the TIS or methionine is still incorporated. We found that methionine was incorporated at almost all noncanonical TISs identified in this study. Comparison of the TISs determined through mass spectrometry with ribosome profiling data revealed that about two-thirds of the novel annotations were indeed supported by the available ribosome profiling data. Sequence conservation across species and a higher abundance of noncanonical TISs than canonical ones in some cases suggests that the noncanonical TISs can have biological functions. Overall, this study provides evidence of protein translation initiation at noncanonical TISs and argues that further studies are required for elucidation of functional implications of such noncanonical translation initiation
    • …
    corecore